Network Multiplexity in Online Chats

Vladimir Gligorijević, Milovan Šuvakov and Bosiljka Tadić

Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia

KNOWeSCAPE
Analyzing the dynamics of information and knowledge landscapes
NOVEMBER 18-20, 2013
Outline

1. Chat Networks from Empirical Data
2. Multiplex Structure of Chat Networks
3. Agent-Based Model of Chats with Bots
4. Impact of Emotional Bots
5. Conclusions
Chat channel

- Data collected from **Ubuntu** chat channel
- **Details of user interaction**: $t, i \rightarrow j, \{v_i, a_i\}$, message type
- **User-to-user interaction** → directed, weighted network
- **Network properties**: hierarchical structure, disassortative mixing, power law distributions of topological quantities (degree, weight...), core of active users, moderators & Bot
- **Self-organized dynamics** of user activities

[V. Gligorijević et al., IEEE Computer Society (2012)]
[V. Gligorijević et al., Physica A 392, 538 (2012)]
Details of user interaction: Annotated data

- Speech act categories (13): Yes/No Question, Wh-Question, Yes/No Answer, Greet, Statement...
- Emotional content of messages: *valence* $v \in (-1, 1)$, *arousal* $a \in (-1, 1)$
- AB model: agent’s emotional state in a phase space

[J.A. Russel, A Circumplex Model of Affect (1980)]
Content-based linking \(\Rightarrow\) multiplex structure

- Emotional content of exchanged messages - positive and negative layers (*duplex network*)
- Message type (speech act categories) - 13 different layers
Hierarchical Structure Emerges from Multiplexity

- User participation among word layers vs. k-shell structure:
 \[A_i = (A_i^{[1]}, ..., A_i^{[13]}) \quad A^R = (1, ..., 1) \]
- Measure of similarity: \(S_i = \frac{A_i A^R}{|A_i||A^R|} \)

\[S_i \sim (k_{i}^{s})^\alpha \quad \alpha = 0.288 \pm 0.007 \]
Duplex networks: inter-layer correlations

- Which layer (emotion) drives the system?
- Conditional probability: \[P(a_{ij}^\pm | W_{ij}^\mp = W) = \frac{N_{ij}^\pm}{N_{ij}^\mp(W)} \]
ABM of online chats

- Emotional agents (representing users and moderators) have "human" attributes: emotion, activity patterns, delay times,...

 \[A[ID, \text{status}, (a, v); \text{activity.profile}; \text{connections}] \]
 \[B[ID, \text{status}, (a^*, v^*); \text{activity.pattern}; \text{connections}] \]

- Emotion variables \(\{a(t), v(t)\} \): nonlinear maps,

- Activity profiles inferred from empirical data: \(P(N_C), P(\Delta t), g(N_C), T_0... \)

- Bots: predefined emotional states (posBot - "enthusiastic", negBot - "ashamed")

- Interaction rules (agent-agent, agent-wall, agent-wall-moderator-Bot) as in real chat channel

- Chat network grows by: addition of new agents (time series \(p(t) \)) and new links, reusing the existing links
Emotional dynamics: Local level \rightarrow Collective state

- Agent’s emotional state vary in time:
 \[a_i(t+1) = (1-\gamma_a)a_i(t) + \left[\frac{h_i^a(t) + qh_{mf}^a(t)}{1+q} (d_1+d_2(a_i-a_{i2})) \right](1-a_i) \]
 (1)

- Influenced by local activity on the network $h_i^a(t)$ and global fields h_{mf}^a; They depend on the active part of the network:
 \[h_i^a(t) = \frac{\sum_{j\in lini} a_j^m (\theta(t_m - (t-1)) - \theta(t_m - (t-T_0)))}{\sum_{j\in lini} (\theta(t_m - (t-1)) - \theta(t_m - (t-T_0)))} \]
 (2)

- Simulated data: $t, i \rightarrow j, \{a_i, v_i\}$
 Details in: [B. Tadić, M. Šuvakov, Arxiv:1305.2741, 2013]
Some results of AB Simulation

Empirical Data

![Empirical Data](image1)

AB Simulation

![AB Simulation](image2)

- Network heterogeneity: $P(q) = C(1 + \alpha \frac{q}{q_0})^{-1/\alpha}$; Data: $\tau_{q_{in}} \approx \tau_{q_{out}} = 1/\alpha = 2.2 \pm 0.1$; AMB: $\tau_{q_{in}} \approx \tau_{q_{out}} = 2.1 \pm 0.2$
- Disassortativity: $<q>_nn \sim q_i^{\mu}$; Data: $\mu \approx -0.5$; ABM: $\mu \approx -0.9$
Impact of Emotional Bots: Emotional Polarization

- Emotional polarity of a link: \(p_{ij}(t) = \text{sgn}(\sum_{t'=1}^{t} v_{ij}(t')) \)
Impact of Emotional Bots: Multiplex Structure

- Link overlap (Jaccard coefficient): $O^{p,n}$, degree correlation: $\rho(q^p, q^n)$, degree rank correlation: $\rho(rk(q^p), rk(q^n))$
Conclusions

- Multiplex representation \Rightarrow detailed insight into user interaction and chat network organization
- Link and node participations through layers (local measures):
 - Hierarchical structure explained through multiplex representation
 - Positive emotional layer drives the system
- Measure of inter-layer interaction (global measures):
 - Multiplex structure changes in presence of Bots
 - Metrics for multiplex network characterize Bot’s efficiency
Financial support:

- Program P1-0044, Research agency of the Republic of Slovenia
- European Community’s program FP7-ICT-2008 under the grant n° 231323

THANKS